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Trapped internal waves over undular topography 
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We describe observations of slowly decelerating stratified flow over undular bottom 
topography in an estuary. The flow, which initially was supercritical with respect to  
the first internal wave mode, approached a resonance after it had become subcritical. 
A series of acoustic images showed large-amplitude first-mode trapped waves during 
this phase of the tide. We derive a criterion for quasi-steady response, and present 
an extension of Yih’s class I1 linear finite-amplitude solutions that accounts for the 
waves observed. 

1. Introduction 
Thc flow of a stratified fluid over an obstacle may generate various phenomena, 

most notably lee wave formation and upstream influence, which have been the 
subject of experimental and theoretical studies for several decades. Of the many 
reviews available, those by Baines (1977, 1984), Huppert (1980) and Turner (1973) 
are particularly relevant. 

Attention in this paper is focused on slowly decelerating stratified flow over 
undular topography as observed in a tidal channel of restricted depth, see figure 1.  
The flow and density distribution are two-dimensional and horizontally quasi- 
periodic. The undulations of the bed (a series of ridges) have a wavelength that is 
typically larger than the water depth, while their height is only a small fraction of 
the water depth. The flow is internally supercritical initially and passes into the 
internally subcritical regime thereafter. Restricting the discussion to  first vertical- 
mode internal waves, criticality is defined here in the hydraulic sense, that is, the flow 
is critical when the upstream first-mode long-wave speed vanishes with respect to a 
fixed coordinate system. If a horizontal axis is taken in the direction of the flow, the 
speed of this long wave will be positive in supercritical flow and negative in 
subcritical flow. 

1 . l .  Conceptual model of resonant trapped waves 
In comparison to the flow over a single obstacle, the stratified flow over an 
undulating bed seems to have received little attention in the literature. However, it 
appears to be possible to describe, a t  least in a qualitative sense, the flow over a series 
of identical obstacles starting from the literature on a single obstacle. The study of 
Baines (1984) on two-layer flow is of particular interest in this connection, because 
of its relative completeness and emphasis on upstream influence. Other references are 
Grimshaw & Smyth (1986) and Melville & Helfrich (1987). 

In  the case where the undisturbed interface is at mid-depth (this case 

t Present address : Department of Oceanography, University of British Columbia, Vancouver, 
BC, Canada V6T 1 W5. 
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FIGURE 1. Schematic diagram of flow corifiguration investigated : -. horizontally averaged 
density profile pl(z) ; horizontally averaged velocity profile u l ( z )  : ----. typical 
streamline. The (flood) current is in the landward direction. 
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approximately represents the observed density structure when modelled as a two- 
layer system), there will be no upstream influence so long as the flow is supercritical, 
see figure 8 ( e )  in Baines (1984). The flow then is largely determined by the local 
topography and there is no interaction with the flow over the other obstacles. As the 
flow (slowly) decelerates, it becomes subcritical at a certain instant and, as a 
consequence, wave disturbances (of type 5E or 5C in Baines 1984) start to travel in 
the upstream direction from each obstacle. At this stage the flow would tend to 
become transcritical, that  is, subcritical upstream and supercritical downstream of 
each obstacle. As a result the interface downstream would drop. The flow downstream 
of a particular obstacle constitutes the upstream boundary condition for the next 
obstaclc, so that Baines' results for smaller ratios of lower-layer depth to water depth 
would now apply. His figure 8 ( a d )  shows that for finite obstacle heights the wave 
disturbances succeed in propagating in the upstream direction. These waves reach 
the obstacle upstream after some time, which causes the flow to become subcritical 
everywhcre. The transcritical flow regime is only transient. With a finite series of 
obstacles this argument applies to all but the last (most downstream) obstacle, where 
the flow remains transcritical for a much longer time. 

As the flow continues to  slow down, resonance conditions arise at  the instant when 
the upstream speed of a first-mode internal wave, the wavelength of which equals 
that of the topography, becomcs zero. A resonance can dcvclop in subcritical flow 
only, since waves of finite wavelength generally travel more slowly t8han the long 
waves mentioned, which have a wavelength that goes to infinity. Simple linearized 
steady- state theory predicts large-amplitude trapped internal waves when the flow 
is near-resonant, but finite-amplitude effects then can no longer be ignored. 

Maxworthy (1979), and Lansing & Maxworthy (1984) showed that in decelerating 
tidal flow lee waves downstream of a single obstacle may start t o  propagate over the 
topography. In the case of a series of obstacles as considered here, the trapped wavcs 
over downstream obstacles may play a similar role. However. this mechanism cannot 
develop so long as the flow is not yet at resonance, because free waves with the 
wavelength of the topography then would still travel in the downstream direction. 

The argument leading to the possibility of resonance requires the flow to decelerate 
gradually. More specifically, the travelling time, rwr of the upstream wave 
disturbance from one obstacle to the other should be much less than the time 
interval, r,., between critical flow and resonant flow. Approximating the speed c of a 
first-mode internal wave for large (but finitc) wavelengths L by c z 
- U+co[l - ~ t ( h / L ) ~ ] ,  where U is the mean water velocity, h the mean water depth, 
CI a coefficient of order one, and co the wave speed for I, + 00 in water a t  rest, the flow 
is critical when U = U,  = co and resonant when c = 0 or IJ = U,. = co[l - ~ z ( h / L ) ~ ] .  At 
resonance the speed of a long wave in the upstream direction is - IT, + co = C I C ~ ( ~ / L ) ~ .  
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The travelling time r, therefore is L / [ C , ( ~ / L ) ~ ] ,  to an order of magnitude. The time 
interval 7, is of the order (Uc-  U,)/ldU/dtl, where t is time. On the assumption that 
JdU/dtl is of order cow, where w is the tidal frequency, r, becomes of order (h /L) l /w  
[note that for small (h /L)2  the time 7, is small compared to the tidal period ( -  l/w)]. 
Introducing a characteristic buoyancy frequency N so that c,, - ML, the condition for 
quasi-steady subcritical flow becomes 

An approach which is seemingly more straightforward is to substitute the quasi- 
steady linear solution in the time-dependent linearized basic equations, and to 
estimate the error thus made. However, a weaker condition [ ( L / h ) w / N  6 13 then 
results. The difference from (1.1) is caused by the implicit disregard in a linearized 
model of upstream influence, which is an intrinsically nonlinear effect. 

Bell (1975) examined the oscillatory stratified flow over an obstacle on the bed of 
an otherwise unrestricted water body, and proposed w / N  -4 1 as a condition for quasi- 
steady behaviour. Bell’s calculations indicate that this condition can be relaxed 
substantially, which, however, does not necessarily apply to  the corresponding 
condition (1.1). 

1.2. Outline of paper 

The observations of the first-mode trapped internal waves referred to  were made in 
a shallow stratified estuary during decreasing flood (Pietrzak, Abraham & 
Kranenburg 1989; Pietrzak, Kranenburg & Abraham 1990). In $2 we describe the 
measuring site, and present mean density and velocity profiles as well as some 
acoustic images showing large-amplitude trapped waves. Next, in $3 we give a quasi- 
steady finite-amplitude analysis for a Boussinesq fluid based on Yih’s (1980) class I1 
linear solutions of the exact stream function equation. This class of solutions includes 
the solution given by Long (1953). The solution obtained holds for subcritical flow; 
it is not intended to correspond completely with the observations, but serves mainly 
for comparison. Finally, in $4 we make some concluding remarks. 

2. Field observations 
The measurements were made in the Rotterdam Waterway, a man-made channel 

that discharges fresh water from the River Rhine into the North Sea. Following the 
usual classification with respect to the density structure (e.g. McDowell & O’Connor 
1977), this estuary varies from stratified during neap tides and high river discharges 
to  partially mixed during spring tides and low discharges. The measuring site 
selected was located in a slightly curved reach of the estuary a t  km 1016. The local 
width between the groynes is 350-380 m, the navigation channel is 250 m wide, and, 
depending on position, the water depth near the axis was 16.3-18.0 m a t  the time of 
the measurements. Echo-sounding and side-scan sonar recordings showed the 
presence of a pronounced series of thirteen permanent ridges at the bed with their 
crests a t  approximately right angles to the axis of the navigation channel. The 
wavelengths vary from 28 to 74 m and the heights of the ridges from 1.15 to 1.80 m. 
These ridges extend from at least 50 m south to  25 m north of the axis. They have 
formed on an elevated section of the bed, the difference in the levels being about 
1.5 m. 

The data to be presented here were obtained on the decreasing flood during a 
normal tide and a relatively high river discharge on 21 October 1987. Vertical profiles 
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of density and horizontal velocity were measured using conductivity and tem- 
perature meters and an impeller-type current meter from a survey vessel anchored 
at  the axis of the waterway at  km 1016. One-minute averages werc obtained to 
eliminate high-frequency fluctuating components in the signals. The densities were 
calculated from the conductivities and temperatures. At the same time a second 
vessel recorded acoustic images of the density structure as well as the bed using a 
210 KHz transducer while sailing up and down along the axis, or parallel to it, 
between km 1015.5 and km 1016.5. 

2.1. Results 

Estimates of an internal Froude number Fr defined as 

U 
Fr = - 

co 

are shown as a function of time in figure 2. The initially supercritical flow became 
subcritical to first-mode waves at about 15.20 h (MET), where upon the possibility 
of resonance arose. We shall concentrate on the period 15.23-15.57 h, because the 
wave pattern as shown on the acoustic images then was clearly related to the 
topography. Considerable internal-wave activity also existed a t  other instants, but 
the acoustic images then showed the large spatial and temporal variability inherent 
to many geophysical flows. Sometimes internal wavcs due to cargo vessels interfered 
with the observations. 

I n  the time interval selected two sets of velocity and density profiles were taken, 
see figure 3. The low near-surface velocities can be attributed to the gravitational 
circulation : the longitudinal density gradient along the estuary drives a net (tidally 
averaged) circulation in vertical planes that is directed landward near the bed and 
seaward near the free surface (e.g. Chatwin 1976; McDowell & O’Connor, 1977). 
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FIGURE 3. Observed velocity (ul) and density (p l )  profiles: 0, 15.23-15.36 h, U = 0.44 m/s, 
A p  = 10.2 k/m3; 0 ,  15.42-15.57 h, U =  0.36 m/s, Ap = 11.4 kg/m3. 
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loo0 m 0 
FIGURE 4. Acoustic image taken about 25 m north of the axis of the waterway while sailing up the 
estuary from 15.2C15.29 h. The flood current is from right to left. Water depth and horizontal 
distance in m. 

Consequently, relatively low near-surface velocities result during flood. The reduced 
velocities at the level of the halocline were observed only when trapped internal 
waves were present. Such a dip in the velocity profile may be attributed to the 
deformation of the flow due to the waves : if the current meter is just beneath a crest, 
or just over a trough of a first-mode trapped internal wave, the measured velocity 
will be less than in a situation where the wave is not there. Thus the measured 
velocity profiles are contaminated with wave components. If i t  is assumed that the 
flow is quasi-steady, see $1.1, the measured profiles should be representative of the 
flow including possible upstream effects of the ridges. The density profiles show 
nearly homogeneous layers near the free surface and the bed, and a diffused 
halocline. Blocking of the flow is not to be expected because of the nearly constant 
density across the (small) height of the ridges. Estimated values of the gradient 
Richardson number a t  the halocline are of the order of one, indicating stable 
stratification. 

The first acoustic image in this period was taken about 25 m north of the axis of 
the waterway from 15.2G15.29 h, see figure 4. At this position the ridges are less 
pronounced, but nevertheless trapped first-mode waves had started to  develop. This 
is shown more clearly in the second image (15.31-15.38 h), figure 5. This and the next 
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FIGURE 5. Acoustic image taken along the axis of the waterway from 15.31-15.38 h. 
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FIGURE 6. Acoustic image taken along the axis of the waterway from 15.39-15.44 h. 
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FIGURE 7 .  Acoustic image taken along the axis of the waterway from 15.46-15.52 h. 

two images were taken along the axis. It was verified that the grey-tones on the 
images do represent density differences by towing a conductivity meter through the 
wave train. Variations in density so obtained can be converted into vertical 
displacements of streamlines by using a mean-density profile taken simultaneously. 

In figure 5, large-amplitude trapped first-mode waves have arisen over the ridges, 
but in some cases the wave seems to respond to two adjacent ripples as if they were 
a single topographic feature. The order-of-magnitude argument of 1.1 indicates that 
the resonant wavelength L - h / ( w , ) f ,  whence it may be concluded that initially the 
flow reacts mainly to long-wave components of the topography. Increasingly smaller 
resonant wavelengths are to be expected as 7, increases. 

The course of events proposed seems to be in accord with the two acoustic images 
taken from 15.39-15.44 h (figure 6) and 15.46-15.52 h (figure 7), which seem to show 
more trapped waves over single ridges. Also, the response to  the relatively isolated 
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first ridge (counted from the seaward side, that is, the first from the right in figure 6), 
which is quite strong on the second and third images, has diminished by the time 
of the fourth image, figure 7 .  

Figures 6 and 7 reveal first-mode waves of large height, up to  6.6 m, which is 40 YO 
of the water depth (over the fifth ridge in figure 7 )  or 5 times the height of the ridge. 
The maximal steepness (wave hcight/wavelength) is about 0.1 1 ,  and maximal 
angles of inclination of the halocline arc about 30". The crests of waves and ridges 
coincide in most cases, which is typical of a flow that is nearing resonance from the 
supercritical side. The dimensionless parameter (L/h)'w/N in ( 1 . 1 )  is about 0.02 for 
the smallcst wavelengths and about 3 for the largest ones, so that a t  least the shorter 
waves should be in quasi-steady equilibrium. 

After resonance, part of the trapped-wave system appeared to disintegrate 
showing waves of smaller amplitude, which were not uniquely coupled to the 
topography. These waves therefore may have bccn developing lee waves. On the 
seaward side of the series of ridges there was some evidence of first-mode waves, the 
wave-length of which was roughly that of the topography. This may have been a 
manifestation of the mechanism proposed by Maxworthy (1979), see $ 1 . 1 .  Internal 
waves showing inverted profiles (with the troughs of the waves over the crests of the 
ridges), which are characteristic of a subresonance response, developed over some of 
the ridges. The interpretation of these observations is further complicated by a flow 
reversal near the free surface driven by the gravitational circulation, shortly after the 
acoustic image of figure 7 was taken. However, critical-layer phenomena were not 
evident. For example, the inclined wave structures below the critical layer observed 
by Koop & McGce (1986) were absent. The data obtained in this phase of the tide are 
not sufficient to analyse the internal-wave response in greater detail. 

3. Finite-amplitude trapped-wave model 
A theoretical description of near-resonant trapped internal waves over a 

periodically corrugated bed is presented in this section making use of an extension 
given by Yih (1980) of Long's (1953) linear finite-amplitude solution of the exact 
stream-function equation for two-dimensional flow. This solution does not allow onc 
to prescribe arbitrary velocity and density profiles, and therefore is not intended to 
correspond with the data in all respects. It is given merely for comparison and to 
explain t h e  resonant waves of the height observed. Referring to $1.1,  we consider the 
subcritical flow regime only. 

Some numerical calculations using the Taylor-Goldstein equation for small- 
amplitude disturbances, together with appropriate boundary conditions a t  a 
sinusoidal bed and a horizontal free surface, as well as observed velocity and density 
profiles, were also carried out (Pietrzak et al. 1990). The calculated wavelengths of 
the bed a t  which resonance occurs (for a given Froude number) were found to 
compare well with those resulting from the model discussed in the section to follow. 
This is not surprising, since for the wavelengths of interest the dispersion relations 
are not widely different. As expected, the wave heights predicted by the small- 
amplitude and finite-amplitude models agree so long as the wave height is small. 
However, the small-amplitude model was found to overestimate the wave heights in 
near-resonance conditions. In  a particular case (the case with A = 0 in figure 9) the 
error a t  the onset of gravitational instability is about 45%. Therefore, the linear 
finite-amplitude model is preferable for the present purpose. An alternative would be 
to solve a non-linear initial-value problcm numerically. 
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We ignore real-fluid effects and three-dimensionality caused by the finite lengths 
of the ridges. The density variations are assumed to be small. The method applied is 
indirect in the sense that the shape of the topography is not prescribed a t  the outset, 
but is calculated afterwards from the solution considered. However, the wavelength 
and height of the topography are prescribed. 

3.1. Formulation 
Adopting the Boussinesq approximation, the stream function $ corresponding to 
Yih’s class I1 solutions satisfies an equation which for the present application can be 
written as 

where U is the mean (horizontally and depth-averaged) water velocity and A’ is a 
constant. The Froude number F ,  which in general differs from the Froude number Fr 
defined by (2.1), is given by 

u2 
(3.2) F2 = x2 

(APlPo) gh.  

Here A p  is the top to bottom density difference and po is the density a t  the bed. The 
constant b is given by 

(3.3) 

The solution given by Yih is extended here by introducing the constant a (0 < a 4 
1). It is shown below that the extended solution allows for the undular bottom 
topography. 

where $, represents, for the case 
under consideration, the horizontally averaged flow and $, the trapped wave. These 
stream functions are given by 

The stream function is of the form $ = 

Uh 
b2F2 

= x 2 -  [ c - A  sin bc+A’( 1 - cos be)] 

and, for a mode-one wave as observed, 

$2 = x2-BcosEsinx-, Uh c+a 
b2F2 1 +a 

(3.4) 

(3.5) 

where [ = 2xx/L and 6 = z /h  are dimensionless horizontal and vertical coordinates 
([ = 0 at the undisturbed bed and c = 1 at the free surface, which is approximated 
by a rigid lid), and A and B are constants. On substitution (3.4) and (3.5) are found 
to satisfy (3.1), provided the constant b is given by (3.3). 

The boundary conditions a t  the bed and the free surface are $ = 0 and, since U is 
the depth-averaged velocity and h the water depth, $ = Uh. Together with (3.2) the 
latter expression gives 

(3.6) 
x2 

b2 
F2 = - [ 1 -A sin b + A’( 1 - cos b)] .  

The density distribution is given by 

(3.7) 
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FIGURE 8. Theoretical horizontally averaged velocity and density profiles. Results are shown for 
L = 30 m, h = 16.6 m and Fr = 0.676 (a  = 0.02), and closely approximate the profiles for other 
wavelengths and Froude numbers. -, A = 0.07; ----, A = 0. 

In  general a compromise has to be sought to  match both the observed velocity profile 
and the observed density profile, since (3.7) must be satisfied for the stream-function 
equation to become linear. 

Results will be presented only for the case where the horizontally averaged 
velocity profile is symmetrical with respect to mid-depth [a$l(LJ/ac = ael(l -<)/ayl, 
see figure 3 for comparison. The constant A' then becomes A' = - A  tan (9) so that 
the Froude numbers F and Fr satisfy 

R -- F 
F r  = 

(1 +2A')i - b 

The above expressions imply that the elevation y = rb of the bed (where $ = 0) is 
given by an expression of the form 

f ( rb ,  cosS;B,a,h/L,A) = 0. (3.9) 
The wave height A, = (l;lb)5-x-(rb)5-0 of the bed, the ratio h/L and the profile 
coefficient A being known from the observations, a relation between B and a results. 
The Froude number Pr also depends on a ,  so that a unique relationship between the 
parameters B and Fr exists. 

A wave height, H ,  is defined as follows. The difference, 7, in the displacement of 
a streamline a t  6 = 0 and k = R (z = $5) follows from 

$(0, 5) = $(T (;+r). (3.10) 

The maximum of 3 as a function of < (for < = cm, say) is defined as the dimensionless 
wave height H/h = qm, 

$(0, Ym) = $(R, Crn + 7m)-  (3.11) 

7, and Cm depend on B and a ,  hence on the Froude number Fr. 

3.2. Comparison with observations 
Theoretical velocity and density profiles for A = 0 and A = 0.07 are shown in figure 
8. The velocity profile for A = 0.07 mimics the observed low near-surface and near- 
bottom velocities in figure 3, but as discussed in $2.1 does not reproduce the dip near 
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Fr 

FIGCRE 9. Observed and calculated wave heights versus internal Proude number. The observations 
indicated by error bars arc. based on the Froude numbers shown in figure 2 and the acoustic images 
of figures 5 ,  6 and 7 .  The vertical error bars represent the scatter in the measured wave heights. 
Thecalculationsareforh = 16.6mandA, = 0.0831.-.4 = 0 . 0 7 : - - - - , A  = O ; - . - . - ,  resonance; 
x , onset of gravitational instability. 

mid-depth. The observed nearly homogeneous layers near the bed and the free 
surface cannot be represented by this model. Attempting to prescribe zero density 
gradients a t  5 = 0 and 5 = 1 would lead to a n  unrealistic velocity profile and 
gravitational instability over a non-flat bed. In addition to unsteadiness, three- 
dimensional and real-fluid effects, this fact renders the model of an approximate 
nature only. Baines (1984) remarks that the overall mode-one response for linear 
stratification is similar to that for a two-layer fluid with equal layer depths. 
Therefore, the discrepancy in the density profiles may be not too serious. To 
compensate for the different density profile, the model value of Ap was chosen so as 
to make the theoretical Froude numbers Fr equal to the measured values. 

Figure 9 shows. for various topographical wavelengths L ,  the calculated wave 
heights when Fr (slowly) decreases to approach resonance conditions. The results are 
seen to be sensitive to the profile coefficient A ,  which is not surprising because low 
near-bed velocities should result in a reduced response.? All theoretical curves 
terminate, before resonance conditions are met, when gravitational instability 
renders the theory invalid. Regions of stagnant fluid or rotors would then be 
expected to develop, but these were not observed, possibly because of the different 
density distribution. The observations shown in figure 9 correspond with the images 
of figures 5-7. The Froude numbers were obtained by interpolation. The theory 
predicts resonance for L = 50&6 m (conditions of figure 5) ,  L = 38f4 m (figure 6) 
and I, = 2 9 f 2  m (figure 7 ) .  However, the images show large wave heights for other 
wavelengths as well, which is likely to be a consequence of the variability of the flow. 
The model is reasonably successful in producing large waves not unlike those 
observed, and the calculations for A = 0.07 fit the data better than those for A = 0. 

The calculated levels of the streamline with maximum q ( =qm) are below those 
observed. which probably is another consequence of the differences in the density 
profiles. This is shown in figure 10 for a particular case. Also shown is the calculated 
amplitude 4 of the wave-induced horizontal velocity near the free surface and the 

t This also explains the smaller wave heights observed near resonance on the ebb during a n  
earlier survey. The gravitational circulation causes relatively low near-bed velocities during ebb 
tides. 
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FIGURE 10. Calculated levels of trough and crest of streamline with 7 = qm and wave-induced 
amplitude of the horizontal velocity versus Froude number for h = 16.60 m, Ab = 0.0831, L = 30 m 
and A = 0.07. The error bars indicate cm and c , + q ,  obtained from figure 7 (the error bars of the 
measured Froude number are not shown). Resonance; x , onset of gravitational instability. 
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FIGURE 11. Calculated bed profiles (only half the wavelength is shown) for h = 16.60 m, Ab = 
0.0831,L = 30 m. -, Fr = 0.676 (a = 0 .02) ,A  = 0.07; ----, Fr = 0.676 (a = 0.02) ,A = 0;  
Fr  = 0.682 (a = 0.04), A = 0.07. Similar profiles obtain for other wavelengths. 

bed. Largc near-bed velocities may bring on the occasional resuspension of fine 
sediments (Dyer 1982). 

Some calculated bed profiles are shown in figure 11 for L = 30 m and Froude 
numbers close to  the Froude number for which gravitational instability occurs. 
Comparing these profiles with those on the acoustic images shows a fair agreement. 
Adopting (3 .5) ,  the right-hand side of which is the first term of a series expansion 
obtained by solving (3.1) using the method of separation of variables, therefore is 
admissible here. 

4. Concluding remarks 
The increased shcar due to internal waves locally reduces the stability of the flow. 

Calculating the gradient Richardson number from the trapped-wave model of $3.1 
yields minimal values (at  the location where gravitational instability first arises) of 
one half in the special case where A’ = 0 (A  arbitrary), and zero in all other cases. It 
may therefore be expected that the internal waves observed have enhanced the 
turbulent exchange of mass and momentum, the Reynolds numbers being large. 
Geyer & Smith (1987) determined gradient Richardson numbers based on mean as 
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well as instantaneous shear from field observations, and also concluded that 
including the shear induced by internal waves results in substantially lower values 
in the halocline. These lower values were consistent with instabilities recorded on 
their acoustic images. The interfacial mixing appeared to be stronger in a situation 
with waves, which was attributed to the increased shear production of turbulent 
kinetic energy. 

To increase the limited knowledge of resonant trapped waves in a tidal flow over 
undular topography, a laboratory experiment would be useful. The inherent time 
dependence could be obtained by towing a section of undular bottom topography at 
a gradually decreasing speed (initially supercritical). Alternatively, a slightly 
supercritical flow could be set up in a flume and the topographical features be allowed 
to slowly accelerate in the downstream direction. The latter approach would be 
appropriate if the effect on the turbulence is to be studied. 

The field survey was carried out by Rijkswaterstaat, Ministry of Transport and 
Public Works, from which also financial support was obtained. The writers wish to 
thank A. van der Wekken and B. Kranenborg of Rijkswaterstaat for their co- 
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